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1. 

The present study deals with the determination of the fundamental frequency of vibration
of simply supported and clamped plates of regular polygonal shape with a free, concentric
circular perforation; see Figure 1. It is assumed that the thickness varies in a discontinuous
fashion in the circular annular subdomain enclosing the hole. This portion may be made
of a dissimilar material. Two independent approaches are followed in order to determine
the fundamental eigenvalues:

(1) By conformally transforming the given configuration in the z-plane onto circular,
concentric regions in the j-plane and making use of the Rayleigh-Ritz method to obtain
the frequency equation [1, 2]. The methodology is applicable in the case of configurations
with several axes of symmetry with a concentric cut-out.

(2) By the finite element algorithmic procedure using a well known finite element code
[3].

2.   

If one makes use of the classical theory of vibrating plates, the normal modes of
transverse vibration of the system shown in Figure 1 are governed by the functional [4].
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Figure 1. Plates of regular polygonal shape with a free, concentric circular edge: (a) square plate, (b) hexagonal
plate.
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where W is the displacement amplitude, D0 =Eh3
0 /12(1− m2), D1 =Eh3

1 /12(1− m2), P0 is
the regular polygon of apothem ap , P2 is the circle of radius R�0 and P1 is the annular region
of outer radius R0 and inner radius R1; see Figure 1. Clearly if the annular region P2 is
made of a different material characterized by E1, m1 and r1 one simply takes this into
account in the corresponding expressions appearing in equation (1).

In the case where the outer boundary is simply supported the boundary conditions at
the outer edge are

W(x, y))=Mn (x, y)=0, (2a, b)

where Mn is the bending moment normal to the edge. On the other hand, when the outer
edge is clamped one has

W(x, y)= (1W/1n)(x, y)=0 (3a, b)

at the outer edge.
Since complying with the natural boundary conditions at the free circular edge will be

extremely complicated, use will be made of polynomial coordinate functions which satisfy
only the essential boundary conditions at the outer edge.†
A regular polygonal shape in the z-plane is transformed onto a unit circle in the j-plane
by means of [2]

z= apAs s
a

k=0

(−1)kakj
ks+1, j= r eiu, (4)

† This is also the case with condition (2b) at the outer edge.
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Figure 2. Approximate conformal mapping of the configurations under study: (a) square plate, (b) hexagonal
plate. On the left are the z-plane configurations, on the right are the j-plane shapes.

where s is the degree of the polygon, As is the coefficient [2], and
ak = ak−1[(k−1)k+1][(k−1)s+2]/[ks(ks+1)], and a0 =1. Expression (4) transforms
also, approximately, the circular subdomain of radius R�0 if R�0�ap .

The corresponding approximate radius in the j-plane is [1], see Figure 2,

r0 2R�0/Asap , (5a)

since r�1. Similarly,

r1 2R�1/Asap . (5b)

The following coordinate functions have been used in the present investigation:
simply supported outer edge,

W(r)=A1(1− r2)+A2(1− r2)r2 +A3(1− r2)r4; (6)

clamped outer edge,

W(r)=A1(1− r2)2 +A2(1− r2)2r2 +A3(1− r2)2r4. (7)

These approximations are substituted in the governing functional (1) once transformation
is performed into the j-plane. The evaluation of the integrals is performed by means of
MATHEMATICA. Minimizing the functional with respect to the Ai s one finally sets up
a frequency determinant whose lowest root is the fundamental frequency coefficient
V1 =zrh0/D0 v1a2, where a is the side of the polygon.

3.   

The numerical results have been obtained using the SAMCEF finite element code using
hybrid elements of triangular and rectangular shape (elements type 55 and 56 of the
SAMCEF Library). The number of elements varied in accordance with the plate
configuration; for instance in the case of hexagonal plates one sixth of the domain was
subdivided into 588 elements with 2659 degrees of freedom.
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4.  

All calculations were performed for m=0·30. Table 1 depicts fundamental frequency
coefficients for simply supported and clamped square plates for several values of R�1/ap and
R�0/ap . The finite element results (presumably of considerable higher accuracy) are lower
than the approximate analytical results.

The agreement is closer in the case of a clamped outer edge due to the satisfaction of
the governing essential boundary conditions at the outer edge. It is important to point out
that present analytical results are in good agreement with those obtained in reference [5].

Table 2 shows fundamental eigenvalues for simply supported and clamped hexagonal
plates. The agreement between finite element values and the approximate, analytical results
is now better than in the case of Table 1. This is due to the fact that the approximations
involved when transforming the circular boundaries of the discontinuity and of the hole

T 1

Comparison of fundamental frequency coefficients in the case of a square plate: A, simply
supported case; B, clamped case

Values of V1 =v1a2zrh0/D0

Thickness variation (h1/h0 = a)
ZXXXXXXXXXXCXXXXXXXXXXV

R1 =R�1/ap R0 =R�0/ap 1 0·90 0·80 1·10 1·20

A 0·05 0·1 (1) 19·90 19·88 19·87 19·93 19·97
(2) 19·67 19·63 19·59 19·71 19·75

0·2 (1) – 19·81 19·75 20·03 20·18
(2) – 19·54 19·39 19·78 19·86

0·3 (1) – 19·69 19·53 20·17 20·46
(2) – 19·41 19·13 19·87 20·04

0·1 0·2 (1) 19·89 19·91 19·86 20·09 20·23
(2) 19·53 19·39 19·26 19·66 19·77

0·3 (1) – 19·78 19·63 20·24 20·52
(2) – 19·26 19·00 19·75 19·94

0·2 0·3 (1) 20·30 20·16 20·06 20·50 20·73
(2) 19·28 19·08 18·93 19·48 19·70

0·4 (1) – 19·98 19·74 20·69 21·13
(2) – 18·95 18·67 19·60 19·93

0·3 0·4 (1) 20·84 20·64 20·50 21·12 21·46
(2) 19·48 19·30 19·17 19·70 19·95

B 0·05 0·1 (1) 36·37 36·35 36·34 36·42 36·48
(2) 35·79 35·72 35·64 35·85 35·91

0·2 (1) – 36·24 36·18 36·55 36·77
(2) – 35·57 35·37 35·91 36·02

0·3 (1) – 36·11 35·95 36·70 37·07
(2) – 35·42 35·13 35·99 36·21

0·1 0·2 (1) 36·70 36·59 36·54 36·85 37·06
(2) 35·67 35·48 35·31 35·84 36·00

0·3 (1) – 36·45 36·31 37·02 37·39
(2) – 35·35 35·11 35·90 36·14

0·2 0·3 (1) 38·06 37·91 37·82 38·31 38·62
(2) 36·30 36·17 36·11 36·48 36·69

0·4 (1) – 37·83 37·80 38·45 38·94
(2) – 36·14 36·15 36·50 36·78

0·3 0·4 (1) 40·90 40·90 41·04 41·04 41·30
(2) 39·14 39·23 39·42 39·15 39·23

(1) Analytical solution. (2) Numerical solution (finite element method).
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T 2

Comparison of fundamental frequency coefficients in the case of a hexagonal plate: A, simply
supported case; B, clamped case

Values of V1 =v1a2zrh0/D0

Thickness variation (a)
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

R1 R0 1 0·90 0·80 1·10 1·20

0·05 0·1 (1) 7·173 7·166 7·162 7·184 7·198
(2) 7·114 7·097 7·080 7·128 7·141

0·2 (1) – 7·137 7·114 7·221 7·279
(2) – 7·061 7·001 7·156 7·189

0·3 (1) – 7·090 7·029 7·272 7·381
(2) – 7·011 7·902 7·200 7·270

0·1 0·2 (1) 7·206 7·176 7·157 7·247 7·297
(2) 7·057 7·003 6·950 7·107 7·151

0·3 (1) – 7·127 7·070 7·302 7·409
(2) – 6·956 6·854 7·149 7·227

0·2 0·3 (1) 7·332 7·276 7·238 7·406 7·495
(2) 6·968 6·896 6·836 7·049 7·132

0·4 (1) – 7·208 7·116 7·481 7·646
(2) – 6·846 6·742 7·099 7·230

0·3 0·4 (1) 7·549 7·469 7·418 7·654 7·784
(2) 7·069 7·003 6·959 7·153 7·250

0·05 0·1 (1) 12·836 12·826 12·822 12·852 12·876
(2) 12·749 12·721 12·692 12·773 12·793

0·2 (1) – 12·787 12·761 12·904 12·986
(2) – 12·674 12·594 12·809 12·854

0·3 (1) – 12·736 12·674 12·959 13·094
(2) – 12·627 12·515 12·857 12·950

0·1 0·2 (1) 12·956 12·915 12·895 13·017 13·093
(2) 12·710 12·639 12·575 12·780 12·843

0·3 (1) – 12·862 12·809 13·078 13·216
(2) – 12·600 12·510 12·818 12·919

0·2 0·3 (1) 13·467 13·409 13·389 13·558 13·677
(2) 12·979 12·933 12·916 13·047 13·129

0·4 (1) – 13·386 13·378 13·606 13·789
(2) – 12·931 12·940 13·064 13·174

0·3 0·4 (1) 14·551 14·562 14·623 14·591 14·678
(2) 14·120 14·162 14·246 14·117 14·146

(1) Analytical solution· (2) Numerical solution (finite element method).

are now closer than in the case of the square plate since equation (4) converges faster for
r�1.

In general the approximation yields accurate eigenvalues, from an engineering
viewpoint, for R�0/ap Q 0·5.

From the analysis of Tables 1 and 2 one concludes that a dynamic stiffening effect takes
place for all the configurations.
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