TRANSVERSE VIBRATIONS OF POLYGONAL PLATES OF DISCONTINUOUSLY VARYING THICKNESS WITH A FREE, CONCENTRIC CIRCULAR EDGE

D. V. Bambill
Department of Engineering, Universidad Nacional del Sur, 8000-Bahia Blanca, Argentina
V. Sonzogni
INTEC (CONICET) and Facultad Regional Santa Fe-UTN, 3000-Santa Fe, Argentina

AND

P. A. A. Laura

Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur 8000-Bahia Blanca, Argentina
(Received 17 May 1996, and in final form 12 September 1996)

1. INTRODUCTION

The present study deals with the determination of the fundamental frequency of vibration of simply supported and clamped plates of regular polygonal shape with a free, concentric circular perforation; see Figure 1. It is assumed that the thickness varies in a discontinuous fashion in the circular annular subdomain enclosing the hole. This portion may be made of a dissimilar material. Two independent approaches are followed in order to determine the fundamental eigenvalues:
(1) By conformally transforming the given configuration in the z-plane onto circular, concentric regions in the ξ-plane and making use of the Rayleigh-Ritz method to obtain the frequency equation [1, 2]. The methodology is applicable in the case of configurations with several axes of symmetry with a concentric cut-out.
(2) By the finite element algorithmic procedure using a well known finite element code [3].

2. APPROXIMATE ANALYTICAL SOLUTION

If one makes use of the classical theory of vibrating plates, the normal modes of transverse vibration of the system shown in Figure 1 are governed by the functional [4].

$$
\begin{aligned}
J(W)= & D_{0} \iint_{P_{0}}\left\{\left(\frac{\partial^{2} W}{\partial x^{2}}+\frac{\partial^{2} W}{\partial y^{2}}\right)^{2}-2(1-\mu)\left[\frac{\partial^{2} W}{\partial x^{2}} \frac{\partial^{2} W}{\partial y^{2}}-\left(\frac{\partial^{2} W}{\partial x \partial y}\right)^{2}\right]\right\} \mathrm{d} x \mathrm{~d} y \\
& -D_{0} \iint_{P_{2}}\left\{\left(\frac{\partial^{2} W}{\partial x^{2}}+\frac{\partial^{2} W}{\partial y^{2}}\right)^{2}-2(1-\mu)\left[\frac{\partial^{2} W}{\partial x^{2}} \frac{\partial^{2} W}{\partial y^{2}}-\left(\frac{\partial^{2} W}{\partial x \partial y}\right)^{2}\right]\right\} \mathrm{d} x \mathrm{~d} y \\
& +D_{1} \iint_{P_{1}}\left\{\left(\frac{\partial^{2} W}{\partial x^{2}}+\frac{\partial^{2} W}{\partial y^{2}}\right)^{2}-2(1-\mu)\left(\frac{\partial^{2} W}{\partial x^{2}} \frac{\partial^{2} W}{\partial y^{2}}-\left(\frac{\partial^{2} W}{\partial x \partial y}\right)^{2}\right]\right\} \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Figure 1. Plates of regular polygonal shape with a free, concentric circular edge: (a) square plate, (b) hexagonal plate.

$$
\begin{equation*}
-\left(\rho h_{0} \omega^{2} \iint_{P_{0}} W^{2} \mathrm{~d} x \mathrm{~d} y-\rho h_{0} \omega^{2} \iint_{P_{2}} W^{2} \mathrm{~d} x \mathrm{~d} y+\rho h_{1} \omega^{2} \iint_{P_{1}} W^{2} \mathrm{~d} x \mathrm{~d} y\right) \tag{1}
\end{equation*}
$$

where W is the displacement amplitude, $D_{0}=E h_{0}^{3} / 12\left(1-\mu^{2}\right)$, $D_{1}=E h_{1}^{3} / 12\left(1-\mu^{2}\right), P_{0}$ is the regular polygon of apothem a_{p}, P_{2} is the circle of radius \bar{R}_{0} and P_{1} is the annular region of outer radius R_{0} and inner radius R_{1}; see Figure 1. Clearly if the annular region P_{2} is made of a different material characterized by E_{1}, μ_{1} and ρ_{1} one simply takes this into account in the corresponding expressions appearing in equation (1).

In the case where the outer boundary is simply supported the boundary conditions at the outer edge are

$$
\begin{equation*}
W(x, y))=M_{n}(x, y)=0 \tag{2a,b}
\end{equation*}
$$

where M_{n} is the bending moment normal to the edge. On the other hand, when the outer edge is clamped one has

$$
\begin{equation*}
W(x, y)=(\partial W / \partial n)(x, y)=0 \tag{3a,b}
\end{equation*}
$$

at the outer edge.
Since complying with the natural boundary conditions at the free circular edge will be extremely complicated, use will be made of polynomial coordinate functions which satisfy only the essential boundary conditions at the outer edge. \dagger
A regular polygonal shape in the z-plane is transformed onto a unit circle in the ξ-plane by means of [2]

$$
\begin{equation*}
z=a_{p} A_{s} \sum_{k=0}^{\infty}(-1)^{k} a_{k} \xi^{k s+1}, \quad \xi=r \mathrm{e}^{\mathrm{i} \theta} \tag{4}
\end{equation*}
$$

\dagger This is also the case with condition (2b) at the outer edge.

(a)

(b)

Figure 2. Approximate conformal mapping of the configurations under study: (a) square plate, (b) hexagonal plate. On the left are the z-plane configurations, on the right are the ξ-plane shapes.
where s is the degree of the polygon, A_{s} is the coefficient [2], and $a_{k}=a_{k-1}[(k-1) k+1][(k-1) s+2][k s(k s+1)]$, and $a_{0}=1$. Expression (4) transforms also, approximately, the circular subdomain of radius \bar{R}_{0} if $\bar{R}_{0} \ll a_{p}$.
The corresponding approximate radius in the ξ-plane is [1], see Figure 2,

$$
\begin{equation*}
r_{0} \simeq \bar{R}_{0} / A_{s} a_{p}, \tag{5a}
\end{equation*}
$$

since $r \ll 1$. Similarly,

$$
\begin{equation*}
r_{1} \simeq \bar{R}_{1} / A_{s} a_{p} . \tag{5b}
\end{equation*}
$$

The following coordinate functions have been used in the present investigation: simply supported outer edge,

$$
\begin{equation*}
W(r)=A_{1}\left(1-r^{2}\right)+A_{2}\left(1-r^{2}\right) r^{2}+A_{3}\left(1-r^{2}\right) r^{4} ; \tag{6}
\end{equation*}
$$

clamped outer edge,

$$
\begin{equation*}
W(r)=A_{1}\left(1-r^{2}\right)^{2}+A_{2}\left(1-r^{2}\right)^{2} r^{2}+A_{3}\left(1-r^{2}\right)^{2} r^{4} . \tag{7}
\end{equation*}
$$

These approximations are substituted in the governing functional (1) once transformation is performed into the ξ-plane. The evaluation of the integrals is performed by means of MATHEMATICA. Minimizing the functional with respect to the A_{i} s one finally sets up a frequency determinant whose lowest root is the fundamental frequency coefficient $\Omega_{1}=\sqrt{\rho h_{0} / D_{0}} \omega_{1} a^{2}$, where a is the side of the polygon.

3. Finite element determinations

The numerical results have been obtained using the SAMCEF finite element code using hybrid elements of triangular and rectangular shape (elements type 55 and 56 of the SAMCEF Library). The number of elements varied in accordance with the plate configuration; for instance in the case of hexagonal plates one sixth of the domain was subdivided into 588 elements with 2659 degrees of freedom.

4. NUMERICAL RESULTS

All calculations were performed for $\mu=0 \cdot 30$. Table 1 depicts fundamental frequency coefficients for simply supported and clamped square plates for several values of \bar{R}_{1} / a_{p} and \bar{R}_{0} / a_{p}. The finite element results (presumably of considerable higher accuracy) are lower than the approximate analytical results.

The agreement is closer in the case of a clamped outer edge due to the satisfaction of the governing essential boundary conditions at the outer edge. It is important to point out that present analytical results are in good agreement with those obtained in reference [5].
Table 2 shows fundamental eigenvalues for simply supported and clamped hexagonal plates. The agreement between finite element values and the approximate, analytical results is now better than in the case of Table 1. This is due to the fact that the approximations involved when transforming the circular boundaries of the discontinuity and of the hole

Table 1
Comparison of fundamental frequency coefficients in the case of a square plate: A, simply supported case; B, clamped case

$R_{1}=\bar{R}_{1} / a_{p}$		$R_{0}=\bar{R}_{0} / a_{p}$		Values of $\Omega_{1}=\omega_{1} a^{2} \sqrt{\rho h_{0} / D_{0}}$ Thickness variation ($h_{1} / h_{0}=\alpha$)					
			1	$0 \cdot 90$	0.80	$1 \cdot 10$	$1 \cdot 20$		
A	$0 \cdot 05$		$0 \cdot 1$	(1)	$19 \cdot 90$	$19 \cdot 88$	19.87	19.93	19.97
		(2)		$19 \cdot 67$	$19 \cdot 63$	19.59	19.71	19.75	
		$0 \cdot 2$	(1)	-	19.81	19.75	20.03	$20 \cdot 18$	
			(2)	-	$19 \cdot 54$	$19 \cdot 39$	$19 \cdot 78$	$19 \cdot 86$	
		$0 \cdot 3$	(1)	-	$19 \cdot 69$	19.53	$20 \cdot 17$	$20 \cdot 46$	
			(2)	-	$19 \cdot 41$	$19 \cdot 13$	$19 \cdot 87$	20.04	
	$0 \cdot 1$	$0 \cdot 2$	(1)	19.89	19.91	19.86	20.09	20.23	
			(2)	19.53	$19 \cdot 39$	19.26	$19 \cdot 66$	19.77	
		$0 \cdot 3$	(1)	-	$19 \cdot 78$	19.63	$20 \cdot 24$	20.52	
			(2)	-	$19 \cdot 26$	19.00	19.75	19.94	
	$0 \cdot 2$	$0 \cdot 3$	(1)	$20 \cdot 30$	$20 \cdot 16$	20.06	$20 \cdot 50$	20.73	
			(2)	$19 \cdot 28$	19.08	18.93	$19 \cdot 48$	19.70	
		$0 \cdot 4$	(1)	-	19.98	19.74	$20 \cdot 69$	$21 \cdot 13$	
			(2)	-	18.95	18.67	$19 \cdot 60$	19.93	
	$0 \cdot 3$	$0 \cdot 4$	(1)	$20 \cdot 84$	$20 \cdot 64$	$20 \cdot 50$	$21 \cdot 12$	21.46	
			(2)	19.48	$19 \cdot 30$	$19 \cdot 17$	19.70	19.95	
B	$0 \cdot 05$	$0 \cdot 1$	(1)		$36 \cdot 35$	$36 \cdot 34$	$36 \cdot 42$	$36 \cdot 48$	
			(2)	$35 \cdot 79$	$35 \cdot 72$	$35 \cdot 64$	$35 \cdot 85$	35.91	
		$0 \cdot 2$	(1)	-	36.24	36.18	$36 \cdot 55$	36.77	
			(2)	-	$35 \cdot 57$	$35 \cdot 37$	35.91	36.02	
		$0 \cdot 3$	(1)	-	36.11	35.95	$36 \cdot 70$	37.07	
			(2)	-	$35 \cdot 42$	$35 \cdot 13$	35.99	36.21	
	$0 \cdot 1$	$0 \cdot 2$	(1)	$36 \cdot 70$	36.59	$36 \cdot 54$	$36 \cdot 85$	37.06	
			(2)	35.67	$35 \cdot 48$	$35 \cdot 31$	35.84	36.00	
		$0 \cdot 3$	(1)	-	$36 \cdot 45$	$36 \cdot 31$	37.02	37.39	
			(2)	-	35.35	35.11	35.90	$36 \cdot 14$	
	$0 \cdot 2$	$0 \cdot 3$	(1)	38.06	37.91	37.82	38.31	38.62	
			(2)	$36 \cdot 30$	$36 \cdot 17$	$36 \cdot 11$	$36 \cdot 48$	36.69	
		$0 \cdot 4$	(1)	-	37.83	$37 \cdot 80$	$38 \cdot 45$	38.94	
			(2)	-	$36 \cdot 14$	$36 \cdot 15$	$36 \cdot 50$	36.78	
	$0 \cdot 3$	$0 \cdot 4$	(1)	$40 \cdot 90$	$40 \cdot 90$	41.04	41.04	$41 \cdot 30$	
			(2)	$39 \cdot 14$	$39 \cdot 23$	$39 \cdot 42$	$39 \cdot 15$	$39 \cdot 23$	

(1) Analytical solution. (2) Numerical solution (finite element method).

Table 2
Comparison of fundamental frequency coefficients in the case of a hexagonal plate: A, simply supported case; B, clamped case

R_{1}	R_{0}		$\begin{aligned} & \text { Values of } \Omega_{1}=\omega_{1} a^{2} \sqrt{\rho h_{0} / D_{0}} \\ & \text { Thickness variation }(\alpha) \end{aligned}$				
			1	$0 \cdot 90$	0.80	$1 \cdot 10$	$1 \cdot 20$
$0 \cdot 05$	$0 \cdot 1$	(1)	$7 \cdot 173$	$7 \cdot 166$	$7 \cdot 162$	$7 \cdot 184$	$7 \cdot 198$
		(2)	$7 \cdot 114$	7.097	7.080	$7 \cdot 128$	$7 \cdot 141$
	$0 \cdot 2$	(1)	-	$7 \cdot 137$	$7 \cdot 114$	$7 \cdot 221$	$7 \cdot 279$
		(2)	-	7.061	7.001	$7 \cdot 156$	$7 \cdot 189$
	$0 \cdot 3$	(1)	-	$7 \cdot 090$	7.029	$7 \cdot 272$	$7 \cdot 381$
		(2)	-	7.011	7.902	$7 \cdot 200$	$7 \cdot 270$
$0 \cdot 1$	$0 \cdot 2$	(1)	7.206	$7 \cdot 176$	$7 \cdot 157$	$7 \cdot 247$	$7 \cdot 297$
		(2)	$7 \cdot 057$	7.003	6.950	$7 \cdot 107$	$7 \cdot 151$
	$0 \cdot 3$	(1)	-	$7 \cdot 127$	7.070	7.302	$7 \cdot 409$
		(2)	-	6.956	6.854	$7 \cdot 149$	$7 \cdot 227$
$0 \cdot 2$	$0 \cdot 3$	(1)	7.332	7.276	7.238	$7 \cdot 406$	$7 \cdot 495$
		(2)	6.968	6.896	6.836	7.049	$7 \cdot 132$
	$0 \cdot 4$	(1)	-	7.208	$7 \cdot 116$	7.481	$7 \cdot 646$
		(2)	-	6.846	6.742	7.099	7.230
$0 \cdot 3$	$0 \cdot 4$	(1)	7.549	$7 \cdot 469$	$7 \cdot 418$	7.654	7.784
		(2)	7.069	7.003	6.959	$7 \cdot 153$	7.250
$0 \cdot 05$	$0 \cdot 1$	(1)	$12 \cdot 836$	12.826	12.822	$12 \cdot 852$	12.876
		(2)	12.749	12.721	12.692	12.773	12.793
	$0 \cdot 2$	(1)	-	12.787	12.761	12.904	12.986
		(2)	-	12.674	12.594	12.809	12.854
	$0 \cdot 3$	(1)	-	12.736	12.674	12.959	13.094
		(2)	-	12.627	12.515	$12 \cdot 857$	$12 \cdot 950$
$0 \cdot 1$	$0 \cdot 2$	(1)	12.956	12.915	$12 \cdot 895$	13.017	13.093
		(2)	12.710	12.639	$12 \cdot 575$	$12 \cdot 780$	$12 \cdot 843$
	$0 \cdot 3$	(1)	-	12.862	$12 \cdot 809$	13.078	13.216
		(2)	-	$12 \cdot 600$	$12 \cdot 510$	$12 \cdot 818$	12.919
$0 \cdot 2$	$0 \cdot 3$	(1)	$13 \cdot 467$	13.409	13.389	$13 \cdot 558$	13.677
		(2)	12.979	12.933	$12 \cdot 916$	13.047	$13 \cdot 129$
	$0 \cdot 4$	(1)	-	13.386	13.378	13.606	13.789
		(2)	-	12.931	$12 \cdot 940$	13.064	13.174
$0 \cdot 3$	$0 \cdot 4$	(1)	14.551	14.562	14.623	14.591	14.678
		(2)	$14 \cdot 120$	$14 \cdot 162$	14.246	$14 \cdot 117$	$14 \cdot 146$

(1) Analytical solution (2) Numerical solution (finite element method).
are now closer than in the case of the square plate since equation (4) converges faster for $\mathrm{r}<1$.
In general the approximation yields accurate eigenvalues, from an engineering viewpoint, for $\bar{R}_{0} / a_{p}<0.5$.
From the analysis of Tables 1 and 2 one concludes that a dynamic stiffening effect takes place for all the configurations.

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program (PIA 1996-1997) and by Secretaría General de Ciencia y Technología of Universidad Nacional del Sur (Program Director: Professor R. E. Rossi).

The authors are indebted to Professor R. H. Gutierrez for his valuable advice regarding the approximate analytical solution presented in this paper and to one of the referees of the present publication for his very constructive criticism.

REFERENCES

1. P. A. A. Laura, E. Romanelli and M. J. Maurizi 1972 Journal of Sound and Vibration 20, 27-38. On the analysis of waveguides of doubly-connected cross-sections by the method of conformal mapping.
2. R. Schinzinger and P. A. A. Laura 1991 (Conformal Mapping: Methods and Applications). Amsterdam, The Netherlands: Elsevier.
3. Samcef User's Manuals, V. 5.1. 1994. Belgium: Samtech and University of Liege.
4. S. Timoshenko and S. Woinowsky-Krieger 1959 (Theory of Plates and Shells). New York, N.Y.: McGraw Hill.
5. P. A. A. Laura, R. H. Gutierrez, V. Sonzogni and S. Idelsohn 1996 Journal of Sound and Vibration 199, 704-710. Transverse vibrations of rectangular plates of non-uniform thickness with a free, concentric circular hole.
